小学奥数必须掌握的30个知识模块

144
作者 szznszqtzjej 米粒妈咪课堂  ← 点击红色字,关注公众号
2018-04-09 16:57 字数 14773 阅读 413评论 0

【导语】小升初如果想要择校重点初中,光靠学校所学是远远不够的,奥数是一个重要的敲门砖。下面小编分享小学奥数必须掌握的30个知识模块,分类系统学习,使学习更高效。

1.和差倍问题和差问题 和倍问题 差倍问题

已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数

公式适用范围 已知两个数的和,差,倍数关系

公式 ①(和-差)÷2=较小数

较小数+差=较大数

和-较小数=较大数

②(和+差)÷2=较大数

较大数-差=较小数

和-较大数=较小数

和÷(倍数+1)=小数

小数×倍数=大数

和-小数=大数

差÷(倍数-1)=小数

小数×倍数=大数

小数+差=大数

关键问题 求出同一条件下的

和与差 和与倍数 差与倍数

2.年龄问题的三个基本特征:

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

4.植树问题

基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树

基本公式 棵数=段数+1

棵距×段数=总长 棵数=段数-1

棵距×段数=总长 棵数=段数

棵距×段数=总长

关键问题 确定所属类型,从而确定棵数与段数的关系

5.鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

6.盈亏问题

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题

基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

8.周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算.

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

13.二进制及其应用

十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

注意:N0=1;N1=N(其中N是任意自然数)

二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

+……+A3×22+A2×21+A1×20

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

【点击下页更多知识】


22.分数拆分

一、 将一个分数单位分解成两个分数之和的公式:

① =+;

②=+(d为自然数);

23.完全平方数

完全平方数特征:

1. 末位数字只能是:0、1、4、5、6、9;反之不成立。

2. 除以3余0或余1;反之不成立。

3. 除以4余0或余1;反之不成立。

4. 约数个数为奇数;反之成立。

5. 奇数的平方的十位数字为偶数;反之不成立。

6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。

7. 两个相临整数的平方之间不可能再有平方数。

平方差公式:X2-Y2=(X-Y)(X+Y)

完全平方和公式:(X+Y)2=X2+2XY+Y2

完全平方差公式:(X-Y)2=X2-2XY+Y2

24.比和比例

比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:表示两个比相等的式子叫做比例。a:b=c:d或

比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

25.综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

26.工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

经验简评:合久必分,分久必合。

27.逻辑推理

基本方法简介:

①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

28.几何面积

基本思路:

在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

常用方法:

1. 连辅助线方法

2. 利用等底等高的两个三角形面积相等。

3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

4. 利用特殊规律

①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。

③圆的面积占外接正方形面积的78.5%。

29.立体图形

名称 图形 特征 表面积 体积

长方体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh

=Sh

正方体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3

圆柱体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底

S侧=Ch V=Sh

圆锥体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底

S侧=rl V=Sh

球体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3

30.时钟问题—快慢表问题

基本思路:

1、 按照行程问题中的思维方法解题;

2、 不同的表当成速度不同的运动物体;

3、 路程的单位是分格(表一周为60分格);

4、 时间是标准表所经过的时间;

合理利用行程问题中的比例关系;

相关推荐:

小升初备考:小学阶段英语基本语法大全

小升初备考:小学阶段最强成语归类

优秀作文      米粒妈咪在线课程