中考数学试题 中考必做数学试题

144
作者 华图课堂 米粒妈咪课堂  ← 点击红色字,关注公众号
2021-01-21 16:02 字数 5052 阅读 473评论 0
【冲刺中考】清华学霸的2020中考数学复习法

  中考数学试题 中考必做数学试题

  米粒妈咪网小编分享中考数学试题 中考必做数学试题,以供需中考数学试题 中考必做数学试题的大家参考。

  中考数学试题 中考必做数学试题

  1.下列各组线段(单位:cm)中,是成比例线段的为()

  A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3

  2.(2013年北京)如图6-4-14,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB=()

  A. 60 m B. 40 m C. 30 m D. 20 m

  3.(2013年上海)如图6-4-15,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB=()

  A. 5∶8 B.3∶8 C.3∶5 D.2∶5

  4.若两个相似三角形的面积之比为1∶16,则它们的周长之比为()

  A.1∶2 B.1∶4 C.1∶5 D.1∶16

  5.(2013年江苏无锡)如图6-4-16,在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积之比等于()

  A.12 B.14 C.18 D.116

  6.(2013年山东威海)如图6-4-17,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.下列结论错误的是()

  A.∠C=2∠A B.BD平分∠ABC

  C.S△BCD=S△BOD D.点D为线段AC的黄金分割点

  7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________________.

  8.(2013年四川雅安)如图6-4-18, 在ABCD,E在AB上,CE,DB交于F,若AE∶BE=4∶3,且BF=2,则DF=________.

  9.(2013年江苏泰州)如图6-4-19,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为________.

  10.(2012年湖南株洲)如图6-4-20,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于点O.

  (1)求证:△COM∽△CBA;

  (2)求线段OM的长度.

  B级 中等题

  11.(2013年山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的.一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图6-4-21,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有__________条.

  12.如图6-4-22,大江的同一侧有A,B两个工厂,它们都有垂直于江边的小路,AD,BE的长度分别为3千米和2千米,且两条小路之间的距离为5千米.现要在江边建一个供水站向A,B两厂送水,欲使供水管路最短,则供水站应建在距E处多远的位置?

  13.(2012年湖南株洲)如图6-4-23,在△ABC中,∠C=90°,BC=5米,AC=12米.点M在线段CA上,从C向A运动,速度为1米/秒;同时点N在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.

  (1)当t为何值时,∠AMN=∠ANM;

  (2)当t为何值时,△AMN的面积最大?并求出这个最大值.

  图6-4-23

  C级 拔尖题

  14.(2013年山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图6-4-24.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF应为多长(材质及其厚度等暂忽略不计)?

  图形的相似

  1.B 2.B 3.A 4.B 5.D 6.C 7.②③

  8.143 解析:AB∥CD△BEF∽△DCFBECD=BFDF,又∵AEBE=43,∴BEAB=37,即BECD=37,则有37=2DF,DF=143.

  9.53,-4

  10.(1)证明:∵A与C关于直线MN对称,

  ∴AC⊥MN.∴∠COM=90°.

  在矩形ABCD中,∠B=90°,∴∠COM=∠B.

  又∵∠ACB=∠MCO,

  ∴△COM∽△CBA.(2)解:∵在Rt△CBA中,AB=6,BC=8,

  ∴AC=10,∴OC=5.

  ∵△COM∽△CBA,

  ∴OCCB=OMAB,OM=154.

  11.3

  12.解:如图55,作出点B关于江边的对称点C,连接AC,则BF+FA=CF+FA=CA.

  根据两点之间线段最短,可知当供水站在点F处时,供水管路最短.

  ∵△ADF∽△CEF,

  ∴设EF=x,则FD=5-x,

  根据相似三角形的性质,得

  EFFD=CEAD,即x5-x=23,解得x=2.

  故供水站应建在距E点2千米处.

  13.解:(1)由题意,得AM=12-t,AN=2t.

  ∵∠AMN=∠ANM,

  ∴AM=AN,从而12-t=2t,

  解得t=4秒.

  ∴当t为4秒时,∠AMN=∠ANM.

  (2)如图56,过点N作NH⊥AC于点H,

  ∴∠NHA=∠C=90°.

  ∵∠A是公共角,∴△NHA∽△BCA.

  ∴ANAB=NHBC,即2t13=NH5,∴NH=10t13.

  从而有S△AMN=12(12-t)10t13=-513t2+6013t,

  ∴当t=6时,S有最大值为18013.

  中考必做数学试题请关注米粒妈咪课堂获得更多中考必做数学试题及相关课程。


数学      米粒妈咪在线课程
相关课堂学习推荐榜